This adjustment functions allows for arbitrary transformations of model
predictions using dplyr::mutate()
statements.
Usage
adjust_predictions_custom(x, ..., .pkgs = character(0))
Arguments
- x
A
tailor()
.- ...
Name-value pairs of expressions. See
dplyr::mutate()
.- .pkgs
A character string of extra packages that are needed to execute the commands.
Data-dependent transformations
Note that custom adjustments should not carry out estimation. If they do,
the estimation steps will be carried out independently at fit()
and predict()
time. For example, if your transformation includes a mean
shift, the postprocessor will take the mean of the column supplied in the
training data at fit()
and, rather than reusing that mean at predict()
will take the mean again of the dataset supplied at predict()
time.
Data Usage
This adjustment doesn't require estimation and, as such, the same data that's
used to train it with fit()
can be predicted on with predict()
; fitting
this adjustment just collects metadata on the supplied column names and does
not risk data leakage.
Examples
library(modeldata)
head(two_class_example)
#> truth Class1 Class2 predicted
#> 1 Class2 0.003589243 0.9964107574 Class2
#> 2 Class1 0.678621054 0.3213789460 Class1
#> 3 Class2 0.110893522 0.8891064779 Class2
#> 4 Class1 0.735161703 0.2648382969 Class1
#> 5 Class2 0.016239960 0.9837600397 Class2
#> 6 Class1 0.999275071 0.0007249286 Class1
tlr <-
tailor() %>%
adjust_equivocal_zone() %>%
adjust_predictions_custom(linear_predictor = binomial()$linkfun(Class2))
tlr_fit <- fit(
tlr,
two_class_example,
outcome = c(truth),
estimate = c(predicted),
probabilities = c(Class1, Class2)
)
predict(tlr_fit, two_class_example) %>% head()
#> # A tibble: 6 × 5
#> truth Class1 Class2 predicted linear_predictor
#> <fct> <dbl> <dbl> <clss_prd> <dbl>
#> 1 Class2 0.00359 0.996 Class2 5.63
#> 2 Class1 0.679 0.321 Class1 -0.747
#> 3 Class2 0.111 0.889 Class2 2.08
#> 4 Class1 0.735 0.265 Class1 -1.02
#> 5 Class2 0.0162 0.984 Class2 4.10
#> 6 Class1 0.999 0.000725 Class1 -7.23